A first course in differential equations with modeling applications / Dennis G. Zill.

By: Zill, Dennis G [author]Material type: TextTextPublication details: Boston, MA : Brooks/Cole, Cengage Learning, ©2013Edition: Tenth editionDescription: 1 volume (various pagings) : color illustrations ; 29 cmISBN: 9781111827052Subject(s): DIFFERENTIAL EQUATIONS -- TEXTBOOKSLOC classification: QA 372 .Z55 2013
Contents:
1. INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminology. Initial-Value Problems. Differential Equations as Mathematical Models. Chapter 1 in Review. 2. FIRST-ORDER DIFFERENTIAL EQUATIONS. Solution Curves Without a Solution. Separable Variables. Linear Equations. Exact Equations and Integrating Factors. Solutions by Substitutions. A Numerical Method. Chapter 2 in Review. 3. MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS. Linear Models. Nonlinear Models. Modeling with Systems of First-Order Differential Equations. Chapter 3 in Review. 4. HIGHER-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory-Linear Equations. Reduction of Order. Homogeneous Linear Equations with Constant Coefficients. Undetermined Coefficients-Superposition Approach. Undetermined Coefficients-Annihilator Approach. Variation of Parameters. Cauchy-Euler Equation. Solving Systems of Linear Differential Equations by Elimination. Nonlinear Differential Equations. Chapter 4 in Review. 5. MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS. Linear Models: Initial-Value Problems. Linear Models: Boundary-Value Problems. Nonlinear Models. Chapter 5 in Review. 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Review of Power Series Solutions About Ordinary Points. Solutions About Singular Points. Special Functions. Chapter 6 in Review. 7. LAPLACE TRANSFORM. Definition of the Laplace Transform. Inverse Transform and Transforms of Derivatives. Operational Properties I. Operational Properties II. Dirac Delta Function. Systems of Linear Differential Equations. Chapter 7 in Review. 8. SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory. Homogeneous Linear Systems. Nonhomogeneous Linear Systems. Matrix Exponential. Chapter 8 in Review. 9. NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS. Euler Methods. Runge-Kutta Methods. Multistep Methods. Higher-Order Equations and Systems. Second-Order Boundary-Value Problems. Chapter 9 in Review. Appendix I: Gamma Function. Appendix II: Matrices. Appendix III: Laplace Transforms. Answers for Selected Odd-Numbered Problems.
Summary: A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible book speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Home library Collection Shelving location Call number Copy number Status Date due Barcode
Books Books National University - Manila
National University - Manila
Gen. Ed. - COE General Circulation GC QA 372 .Z55 2013 c.2 (Browse shelf (Opens below)) c.2 Available NULIB000006444

Includes index.

1. INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminology. Initial-Value Problems. Differential Equations as Mathematical Models. Chapter 1 in Review. 2. FIRST-ORDER DIFFERENTIAL EQUATIONS. Solution Curves Without a Solution. Separable Variables. Linear Equations. Exact Equations and Integrating Factors. Solutions by Substitutions. A Numerical Method. Chapter 2 in Review. 3. MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS. Linear Models. Nonlinear Models. Modeling with Systems of First-Order Differential Equations. Chapter 3 in Review. 4. HIGHER-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory-Linear Equations. Reduction of Order. Homogeneous Linear Equations with Constant Coefficients. Undetermined Coefficients-Superposition Approach. Undetermined Coefficients-Annihilator Approach. Variation of Parameters. Cauchy-Euler Equation. Solving Systems of Linear Differential Equations by Elimination. Nonlinear Differential Equations. Chapter 4 in Review. 5. MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS. Linear Models: Initial-Value Problems. Linear Models: Boundary-Value Problems. Nonlinear Models. Chapter 5 in Review. 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Review of Power Series Solutions About Ordinary Points. Solutions About Singular Points. Special Functions. Chapter 6 in Review. 7. LAPLACE TRANSFORM. Definition of the Laplace Transform. Inverse Transform and Transforms of Derivatives. Operational Properties I. Operational Properties II. Dirac Delta Function. Systems of Linear Differential Equations. Chapter 7 in Review. 8. SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory. Homogeneous Linear Systems. Nonhomogeneous Linear Systems. Matrix Exponential. Chapter 8 in Review. 9. NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS. Euler Methods. Runge-Kutta Methods. Multistep Methods. Higher-Order Equations and Systems. Second-Order Boundary-Value Problems. Chapter 9 in Review. Appendix I: Gamma Function. Appendix II: Matrices. Appendix III: Laplace Transforms. Answers for Selected Odd-Numbered Problems.

A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible book speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations.

There are no comments on this title.

to post a comment.

© 2021 NU LRC. All rights reserved.Privacy Policy I Powered by: KOHA