Foundation and anchor design guide for metal building systems / Alexander Newman

By: Newman, Alexander [author]Material type: TextTextPublication details: New York : McGraw-Hill, c2013Description: xiv, 298 pages : illustrations ; 24 cmISBN: 9780071766357Subject(s): BUILDING, IRON AND STEEL | METAL BUILDINGS | ARCHORAGE (STRUCTURAL ENGINEERING) | FOUNDATIONS | STRUCTURAL DESIGNLOC classification: TA 684 .N49 2013
Contents:
1. Introduction to Metal Building Systems -- 1.1. Two Main Classes of Metal Building Systems -- 1.2. Frame-and-Purlin Buildings: Primary and Secondary Framing -- 1.2.1. Primary Frames: Usage and Terminology -- 1.2.2. Single-Span Rigid Frames -- 1.2.3. Multiple-Span Rigid Frames -- 1.2.4. Tapered Beam -- 1.2.5. Trusses -- 1.2.6. Other Primary Framing Systems -- 1.2.7. Endwall and Sidewall Framing -- 1.3. Frame-and-Purlin Buildings: Lateral-Force-Resisting Systems -- 1.4. Quonset Hut-Type Buildings -- References -- 2. Foundation Design Basics -- 2.1. Soil Types and Properties -- 2.1.1. Introduction -- 2.1.2. Some Relevant Soil Properties -- 2.1.3. Soil Classification -- 2.1.4. Characteristics of Coarse-Grained Soils -- 2.1.5. Characteristics of Fine-Grained Soils -- 2.1.6. The Atterberg Limits -- 2.1.7. Soil Mixtures -- 2.1.8. Structural Fill -- 2.1.9. Rock -- 2.2. Problem Soils -- 2.2.1. Expansive Soils: The Main Issues -- 2.2.2. Measuring Expansive Potential of Soil -- 2.2.3.Organics -- 2.2.4. Collapsing Soils and Karst -- 2.3. Soil Investigation -- 2.3.1. Types of Investigation -- 2.3.2. Preliminary Exploration -- 2.3.3. Detailed Exploration: Soil Borings and Other Methods -- 2.3.4. Laboratory Testing -- 2.4. Settlement and Heave Issues -- 2.4.1. What Causes Settlement? -- 2.4.2. Settlement in Sands and Gravels -- 2.4.3. Settlement in Silts and Clays -- 2.4.4. Differential Settlement -- 2.4.5. Some Criteria for Tolerable Differential Settlement -- 2.5. Determination of Allowable Bearing Value -- 2.5.1. Why Not Simply Use the Code Tables? -- 2.5.2. Special Provisions for Seismic Areas -- 2.5.3. What Constitutes a Foundation Failure? -- 2.5.4. Summary -- 2.6. Shallow vs. Deep Foundations -- References -- 3. Foundations for Metal Building Systems: The Main Issues -- 3.1. The Differences between Foundations for Conventional Buildings and Metal Building Systems -- 3.1.1. Light Weight Means Large Net Uplift -- 3.1.2. Large Lateral Reactions -- 3.1.3. Factors of Safety and One-Third Stress Increase -- 3.1.4. In Some Circumstances, Uncertainty of Reactions -- 3.2. Estimating Column Reactions -- 3.2.1. Methods of Estimating Reactions -- 3.2.2. How Accurate Are the Estimates? -- 3.3. Effects of Column Fixity on Foundations -- 3.3.1. Is There a Cost Advantage? -- 3.3.2. Feasibility of Fixed-Base Columns in MBS -- 3.3.3.Communication Breakdown -- 3.4. General Procedure for Foundation Design -- 3.4.1. Assign Responsibilities -- 3.4.2. Collect Design Information -- 3.4.3. Research Relevant Code Provisions and Determine Reactions -- 3.4.4. Determine Controlling Load Combinations -- 3.4.5. Choose Shallow or Deep Foundations -- 3.4.6. Establish Minimum Foundation Depth -- 3.4.7. Design the Foundation -- 3.5. Reliability, Versatility, and Cost -- 3.5.1. Definitions -- 3.5.2. Some Examples -- 3.6. Column Pedestals (Piers) -- 3.6.1. The Area Inviting Controversy -- 3.6.2. Two Methods of Supporting Steel Columns in Shallow Foundations -- 3.6.3. Establishing Sizes of Column Pedestals (Piers) -- 3.6.4. Minimum Reinforcement of Piers -- References -- 4. Design of Isolated Column Footings -- 4.1. The Basics of Footing Design and Construction -- 4.1.1. Basic Design Requirements -- 4.1.2. Construction Requirements -- 4.1.3. Seismic Ties -- 4.1.4. Reinforced-Concrete Footings -- 4.1.5. Plain-Concrete and Other Footings -- 4.1.6. Nominal vs. Factored Loading -- 4.2. The Design Process -- 4.2.1. General Design Procedure -- 4.2.2. Using ASD Load Combinations -- 4.2.3. Using Load Combinations for Strength Design -- 4.2.4. What Is Included in the Dead Load? -- 4.2.5. Designing for Moment -- 4.2.6. Designing for Shear -- 4.2.7. Minimum Footing Reinforcement -- 4.2.8. Distribution of Reinforcement Rectangular Footings -- 4.2.9. Designing for Uplift -- 4.2.10. Reinforcement at Top of Footings -- References -- 5. Foundation Walls and Wall Footings -- 5.1. The Basics of Design and Construction -- 5.1.1. Foundation Options for Support of Exterior Walls -- 5.1.2. Design and Construction Requirements for Foundation Walls -- 5.1.3. Construction of Wall Footings -- 5.1.4. Design of Wall Footings -- References -- 6. Tie Rods, Hairpins, and Slab Ties -- 6.1. Tie Rods -- 6.1.1. The Main Issues -- 6.1.2. Some Basic Tie-Rod Systems -- 6.1.3.A Reliable Tie-Rod Design -- 6.1.4. Development of Tie Rods by Standard Hooks -- 6.1.5. Design of Tie Rods Considering Elastic Elongation -- 6.1.6. Post-Tensioned Tie Rods -- 6.1.7. Tie-Rod Grid -- 6.1.8. Which Tie-Rod Design Is Best? -- 6.2. Hairpins and Slab Ties -- 6.2.1. Hairpins: The Essence of the System -- 6.2.2. Hairpins in Slabs on Grade -- 6.2.3. Hairpins: The Design Process -- 6.2.4. Development of Straight Bars in Slabs -- 6.2.5. Slab Ties (Dowels) -- 6.2.6. Using Foundation Seats -- References -- 7. Moment-Resisting Foundations -- 7.1. The Basic Concept -- 7.1.1.A Close Relative: Cantilevered Retaining Wall -- 7.1.2. Advantages and Disadvantages -- 7.2. Active, Passive, and At-Rest Soil Pressures -- 7.2.1. The Nature of Active, Passive, and At-Rest Pressures -- 7.2.2. How to Compute Active, Passive, and At-Rest Pressure -- 7.2.3. Typical Values of Active, Passive, and At-Rest Coefficients -- 7.3. Lateral Sliding Resistance -- 7.3.1. The Nature of Lateral Sliding Resistance -- 7.3.2.Combining Lateral Sliding Resistance and Passive Pressure Resistance -- 7.4. Factors of Safety against Overturning and Sliding -- 7.4.1. No Explicit Factors of Safety in IBC Load Combinations -- 7.4.2. Explicit Factors of Safety for Retaining Walls -- 7.4.3. How to Increase Lateral Sliding Resistance -- 7.5. The Design Procedures -- 7.5.1. Design Input -- 7.5.2. Design Using Combined Stresses Acting on Soil -- 7.5.3. The Pressure Wedge Method -- 7.5.4. General Design Process -- 7.5.5. Moment-Resisting Foundations in Combination with Slab Dowels -- References -- 8. Slab with Haunch, Trench Footings, and Mats -- 8.1. Slab with Haunch -- 8.1.1. General Issues -- 8.1.2. The Role of Girt Inset -- 8.1.3. Resisting the Column Reactions -- 8.2. Trench Footings -- 8.3. Mats -- 8.3.1.Common Uses -- 8.3.2. The Basics of Design -- 8.3.3. Typical Construction in Cold Climates -- 8.3.4. Using Anchor Bolts in Mats -- References -- 9. Deep Foundations -- 9.1. Introduction -- 9.2. Deep Piers -- 9.2.1. The Basics of Design and Construction -- 9.2.2. Resisting Uplift and Lateral Column Reactions with Deep Piers -- 9.3. Piles -- 9.3.1. The Basic Options -- 9.3.2. The Minimum Number of Piles -- 9.3.3. Using Structural Slab in Combination with Deep Foundations -- 9.3.4. Resisting Uplift with Piles -- 9.3.5. Resisting Lateral Column Reactions with Piles -- References -- 10. Anchors in Metal Building Systems -- 10.1. General Issues -- 10.1.1. Terminology and Purpose -- 10.1.2. The Minimum Number of Anchor Bolts -- 10.2. Anchor Bolts: Construction and Installation -- 10.2.1. Typical Construction -- 10.2.2. Field Installation -- 10.2.3. Placement Tolerances vs. Oversized Holes in Column Base Plates -- 10.2.4. Using Anchor Bolts for Column Leveling -- 10.2.5. Should Anchor Bolts Be Used to Transfer Horizontal Column Reactions? -- 10.3. Design of Anchor Bolts: General Provisions -- 10.3.1. Provisions of the International Building Code -- 10.3.2. ACI318-08 Appendix D -- 10.4. Design of Anchor Bolts for Tension per ACI 318-08 Appendix D -- 10.4.1. Tensile Strength of Anchor Bolt vs. Tensile Strength of Concrete for a Single Anchor -- 10.4.2. Tensile Strength of an Anchor Group -- 10.4.3. Tensile Strength of Steel Anchors -- 10.4.4. Pullout Strength of Anchor in Tension -- 10.4.5. Concrete Side-Face Blowout Strength of Headed Anchors in Tension -- 10.4.6. Concrete Breakout Strength of Anchors in Tension -- 10.4.7. Using Anchor Reinforcement for Tension -- 10.5. Design of Anchors for Shear per ACI 318-08 Appendix D -- 10.5.1. Introduction -- 10.5.2. Steel Strength of Anchors in Shear -- 10.5.3. Concrete Breakout Strength in Shear: General -- 10.5.4. Basic Concrete Breakout Strength in Shear Vb -- 10.5.5. Concrete Breakout Strength in Shear for Anchors Close to Edge on Three or More Sides -- 10.5.6. Concrete Breakout Strength in Shear: Modification Factors -- 10.5.7. Using Anchor Reinforcement for Concrete Breakout Strength in Shear -- 10.5.8. Using a Combination of Edge Reinforcement and Anchor Reinforcement for Concrete Breakout Strength in Shear -- 10.5.9. Concrete Pryout Strength in Shear -- 10.5.10.Combined Tension and Shear -- 10.5.11. Minimum Edge Distances and Spacing of Anchors -- 10.5.12. Concluding Remarks -- References -- 11. Concrete Embedments in Metal Building Systems -- 11.1. The Role of Concrete Embedments -- 11.1.1. Prior Practices vs. Today's Code Requirements -- 11.1.2. Two Options for Resisting High Horizontal Column Reactions -- 11.1.3. Transfer of Uplift Forces to Foundations: No Alternative to Anchor Bolts? -- 11.2. Using Anchor Bolts to Transfer Horizontal Column Reactions to Foundations -- 11.2.1. Some Problems with Shear Resistance of Anchor Bolts -- 11.2.2. Possible Solutions to Enable Resistance of Anchor Bolts to Horizontal Forces -- 11.2.3. Design of Anchor Bolts for Bending -- 11.3. Concrete Embedments for the Transfer of Horizontal Column Reactions to Foundations: An Overview -- 11.4. Shear Lugs and the Newman Lug -- 11.4.1. Construction of Shear Lugs -- 11.4.2. Minimum Anchor Bolt Spacing and Column Sizes Used with Shear Lugs -- 11.4.3. Design of Shear Lugs: General Procedure -- 11.4.4. Determination of Bearing Strength -- 11.4.5. Determination of Concrete Shear Strength -- 11.4.6. The Newman Lug -- 11.5. Recessed Column Base -- 11.5.1. Construction -- 11.5.2. Design -- 11.6. Other Embedments -- 11.6.1. Cap Plate -- 11.6.2. Embedded Plate with Welded-On Studs -- References.
Summary: This practical guide serves as the industry standard for foundation design of metal building systems.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Home library Collection Shelving location Call number Copy number Status Date due Barcode
Books Books LRC - Main
National University - Manila
General Education General Circulation GC TA 684 .N49 2013 c.1 (Browse shelf (Opens below)) c.1 Available NULIB000007096
Books Books LRC - Main
National University - Manila
Civil Engineering General Circulation GC TA 684 .N49 2013 c.2 (Browse shelf (Opens below)) c.2 Available NULIB000013539

Includes index.

1. Introduction to Metal Building Systems --
1.1. Two Main Classes of Metal Building Systems --
1.2. Frame-and-Purlin Buildings: Primary and Secondary Framing --
1.2.1. Primary Frames: Usage and Terminology --
1.2.2. Single-Span Rigid Frames --
1.2.3. Multiple-Span Rigid Frames --
1.2.4. Tapered Beam --
1.2.5. Trusses --
1.2.6. Other Primary Framing Systems --
1.2.7. Endwall and Sidewall Framing --
1.3. Frame-and-Purlin Buildings: Lateral-Force-Resisting Systems --
1.4. Quonset Hut-Type Buildings --
References --
2. Foundation Design Basics --
2.1. Soil Types and Properties --
2.1.1. Introduction --
2.1.2. Some Relevant Soil Properties --
2.1.3. Soil Classification --
2.1.4. Characteristics of Coarse-Grained Soils --
2.1.5. Characteristics of Fine-Grained Soils --
2.1.6. The Atterberg Limits --
2.1.7. Soil Mixtures --
2.1.8. Structural Fill --
2.1.9. Rock --
2.2. Problem Soils --
2.2.1. Expansive Soils: The Main Issues --
2.2.2. Measuring Expansive Potential of Soil --
2.2.3.Organics --
2.2.4. Collapsing Soils and Karst --
2.3. Soil Investigation --
2.3.1. Types of Investigation --
2.3.2. Preliminary Exploration --
2.3.3. Detailed Exploration: Soil Borings and Other Methods --
2.3.4. Laboratory Testing --
2.4. Settlement and Heave Issues --
2.4.1. What Causes Settlement? --
2.4.2. Settlement in Sands and Gravels --
2.4.3. Settlement in Silts and Clays --
2.4.4. Differential Settlement --
2.4.5. Some Criteria for Tolerable Differential Settlement --
2.5. Determination of Allowable Bearing Value --
2.5.1. Why Not Simply Use the Code Tables? --
2.5.2. Special Provisions for Seismic Areas --
2.5.3. What Constitutes a Foundation Failure? --
2.5.4. Summary --
2.6. Shallow vs. Deep Foundations --
References --
3. Foundations for Metal Building Systems: The Main Issues --
3.1. The Differences between Foundations for Conventional Buildings and Metal Building Systems --
3.1.1. Light Weight Means Large Net Uplift --
3.1.2. Large Lateral Reactions --
3.1.3. Factors of Safety and One-Third Stress Increase --
3.1.4. In Some Circumstances, Uncertainty of Reactions --
3.2. Estimating Column Reactions --
3.2.1. Methods of Estimating Reactions --
3.2.2. How Accurate Are the Estimates? --
3.3. Effects of Column Fixity on Foundations --
3.3.1. Is There a Cost Advantage? --
3.3.2. Feasibility of Fixed-Base Columns in MBS --
3.3.3.Communication Breakdown --
3.4. General Procedure for Foundation Design --
3.4.1. Assign Responsibilities --
3.4.2. Collect Design Information --
3.4.3. Research Relevant Code Provisions and Determine Reactions --
3.4.4. Determine Controlling Load Combinations --
3.4.5. Choose Shallow or Deep Foundations --
3.4.6. Establish Minimum Foundation Depth --
3.4.7. Design the Foundation --
3.5. Reliability, Versatility, and Cost --
3.5.1. Definitions --
3.5.2. Some Examples --
3.6. Column Pedestals (Piers) --
3.6.1. The Area Inviting Controversy --
3.6.2. Two Methods of Supporting Steel Columns in Shallow Foundations --
3.6.3. Establishing Sizes of Column Pedestals (Piers) --
3.6.4. Minimum Reinforcement of Piers --
References --
4. Design of Isolated Column Footings --
4.1. The Basics of Footing Design and Construction --
4.1.1. Basic Design Requirements --
4.1.2. Construction Requirements --
4.1.3. Seismic Ties --
4.1.4. Reinforced-Concrete Footings --
4.1.5. Plain-Concrete and Other Footings --
4.1.6. Nominal vs. Factored Loading --
4.2. The Design Process --
4.2.1. General Design Procedure --
4.2.2. Using ASD Load Combinations --
4.2.3. Using Load Combinations for Strength Design --
4.2.4. What Is Included in the Dead Load? --
4.2.5. Designing for Moment --
4.2.6. Designing for Shear --
4.2.7. Minimum Footing Reinforcement --
4.2.8. Distribution of Reinforcement Rectangular Footings --
4.2.9. Designing for Uplift --
4.2.10. Reinforcement at Top of Footings --
References --
5. Foundation Walls and Wall Footings --
5.1. The Basics of Design and Construction --
5.1.1. Foundation Options for Support of Exterior Walls --
5.1.2. Design and Construction Requirements for Foundation Walls --
5.1.3. Construction of Wall Footings --
5.1.4. Design of Wall Footings --
References --
6. Tie Rods, Hairpins, and Slab Ties --
6.1. Tie Rods --
6.1.1. The Main Issues --
6.1.2. Some Basic Tie-Rod Systems --
6.1.3.A Reliable Tie-Rod Design --
6.1.4. Development of Tie Rods by Standard Hooks --
6.1.5. Design of Tie Rods Considering Elastic Elongation --
6.1.6. Post-Tensioned Tie Rods --
6.1.7. Tie-Rod Grid --
6.1.8. Which Tie-Rod Design Is Best? --
6.2. Hairpins and Slab Ties --
6.2.1. Hairpins: The Essence of the System --
6.2.2. Hairpins in Slabs on Grade --
6.2.3. Hairpins: The Design Process --
6.2.4. Development of Straight Bars in Slabs --
6.2.5. Slab Ties (Dowels) --
6.2.6. Using Foundation Seats --
References --
7. Moment-Resisting Foundations --
7.1. The Basic Concept --
7.1.1.A Close Relative: Cantilevered Retaining Wall --
7.1.2. Advantages and Disadvantages --
7.2. Active, Passive, and At-Rest Soil Pressures --
7.2.1. The Nature of Active, Passive, and At-Rest Pressures --
7.2.2. How to Compute Active, Passive, and At-Rest Pressure --
7.2.3. Typical Values of Active, Passive, and At-Rest Coefficients --
7.3. Lateral Sliding Resistance --
7.3.1. The Nature of Lateral Sliding Resistance --
7.3.2.Combining Lateral Sliding Resistance and Passive Pressure Resistance --
7.4. Factors of Safety against Overturning and Sliding --
7.4.1. No Explicit Factors of Safety in IBC Load Combinations --
7.4.2. Explicit Factors of Safety for Retaining Walls --
7.4.3. How to Increase Lateral Sliding Resistance --
7.5. The Design Procedures --
7.5.1. Design Input --
7.5.2. Design Using Combined Stresses Acting on Soil --
7.5.3. The Pressure Wedge Method --
7.5.4. General Design Process --
7.5.5. Moment-Resisting Foundations in Combination with Slab Dowels --
References --
8. Slab with Haunch, Trench Footings, and Mats --
8.1. Slab with Haunch --
8.1.1. General Issues --
8.1.2. The Role of Girt Inset --
8.1.3. Resisting the Column Reactions --
8.2. Trench Footings --
8.3. Mats --
8.3.1.Common Uses --
8.3.2. The Basics of Design --
8.3.3. Typical Construction in Cold Climates --
8.3.4. Using Anchor Bolts in Mats --
References --
9. Deep Foundations --
9.1. Introduction --
9.2. Deep Piers --
9.2.1. The Basics of Design and Construction --
9.2.2. Resisting Uplift and Lateral Column Reactions with Deep Piers --
9.3. Piles --
9.3.1. The Basic Options --
9.3.2. The Minimum Number of Piles --
9.3.3. Using Structural Slab in Combination with Deep Foundations --
9.3.4. Resisting Uplift with Piles --
9.3.5. Resisting Lateral Column Reactions with Piles --
References --
10. Anchors in Metal Building Systems --
10.1. General Issues --
10.1.1. Terminology and Purpose --
10.1.2. The Minimum Number of Anchor Bolts --
10.2. Anchor Bolts: Construction and Installation --
10.2.1. Typical Construction --
10.2.2. Field Installation --
10.2.3. Placement Tolerances vs. Oversized Holes in Column Base Plates --
10.2.4. Using Anchor Bolts for Column Leveling --
10.2.5. Should Anchor Bolts Be Used to Transfer Horizontal Column Reactions? --
10.3. Design of Anchor Bolts: General Provisions --
10.3.1. Provisions of the International Building Code --
10.3.2. ACI318-08 Appendix D --
10.4. Design of Anchor Bolts for Tension per ACI 318-08 Appendix D --
10.4.1. Tensile Strength of Anchor Bolt vs. Tensile Strength of Concrete for a Single Anchor --
10.4.2. Tensile Strength of an Anchor Group --
10.4.3. Tensile Strength of Steel Anchors --
10.4.4. Pullout Strength of Anchor in Tension --
10.4.5. Concrete Side-Face Blowout Strength of Headed Anchors in Tension --
10.4.6. Concrete Breakout Strength of Anchors in Tension --
10.4.7. Using Anchor Reinforcement for Tension --
10.5. Design of Anchors for Shear per ACI 318-08 Appendix D --
10.5.1. Introduction --
10.5.2. Steel Strength of Anchors in Shear --
10.5.3. Concrete Breakout Strength in Shear: General --
10.5.4. Basic Concrete Breakout Strength in Shear Vb --
10.5.5. Concrete Breakout Strength in Shear for Anchors Close to Edge on Three or More Sides --
10.5.6. Concrete Breakout Strength in Shear: Modification Factors --
10.5.7. Using Anchor Reinforcement for Concrete Breakout Strength in Shear --
10.5.8. Using a Combination of Edge Reinforcement and Anchor Reinforcement for Concrete Breakout Strength in Shear --
10.5.9. Concrete Pryout Strength in Shear --
10.5.10.Combined Tension and Shear --
10.5.11. Minimum Edge Distances and Spacing of Anchors --
10.5.12. Concluding Remarks --
References --
11. Concrete Embedments in Metal Building Systems --
11.1. The Role of Concrete Embedments --
11.1.1. Prior Practices vs. Today's Code Requirements --
11.1.2. Two Options for Resisting High Horizontal Column Reactions --
11.1.3. Transfer of Uplift Forces to Foundations: No Alternative to Anchor Bolts? --
11.2. Using Anchor Bolts to Transfer Horizontal Column Reactions to Foundations --
11.2.1. Some Problems with Shear Resistance of Anchor Bolts --
11.2.2. Possible Solutions to Enable Resistance of Anchor Bolts to Horizontal Forces --
11.2.3. Design of Anchor Bolts for Bending --
11.3. Concrete Embedments for the Transfer of Horizontal Column Reactions to Foundations: An Overview --
11.4. Shear Lugs and the Newman Lug --
11.4.1. Construction of Shear Lugs --
11.4.2. Minimum Anchor Bolt Spacing and Column Sizes Used with Shear Lugs --
11.4.3. Design of Shear Lugs: General Procedure --
11.4.4. Determination of Bearing Strength --
11.4.5. Determination of Concrete Shear Strength --
11.4.6. The Newman Lug --
11.5. Recessed Column Base --
11.5.1. Construction --
11.5.2. Design --
11.6. Other Embedments --
11.6.1. Cap Plate --
11.6.2. Embedded Plate with Welded-On Studs --
References.

This practical guide serves as the industry standard for foundation design of metal building systems.

There are no comments on this title.

to post a comment.

© 2021 NU LRC. All rights reserved.Privacy Policy I Powered by: KOHA