Data mining algorithms explained using R / Paweł Cichosz
Material type:

Item type | Current library | Home library | Collection | Shelving location | Call number | Copy number | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|---|---|
![]() |
LRC - Graduate Studies | National University - Manila | Gen. Ed. - CCIT | General Circulation | GC QA 76.9.D343 .C53 2015 (Browse shelf (Opens below)) | c.1 | Available | NULIB000011358 |
Browsing National University - Manila shelves, Shelving location: General Circulation, Collection: Gen. Ed. - CCIT Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
GC QA 76.9.D33 .C37 2015 c.2 Data structures and abstractions with JavaTM / | GC QA 76.9.D35 .B84 2013 Data structures using Java / | GC QA 76.9.D38 .H36 2012 Data mining : concepts and techniques / | GC QA 76.9.D343 .C53 2015 Data mining algorithms explained using R / | GC QA 76.9.D343 .R87 2014 Mining the social web : data mining facebook, twitter, linkedin, google+, github and more / | GC QA 76.9.D343 .W58 2011 Data mining : practical machine learning tools and techniques / | GC QA 76.9.E94 .K36 1992 Introduction to computer system performance evaluation / |
Includes bibliographical references and index.
Part I. Preliminaries -- 1. Tasks -- 2. Basic statistics -- Part II. Classification -- 3. Decision trees -- 4. Naèive Bayes classifier -- 5. Linear classification -- 6. Misclassification costs -- 7. Classification model evaluation -- Part III. Regression -- 8. Linear regression -- 9. Regression trees -- 10. Regression model evaluation -- Part IV. Clustering -- 11. (Dis)similarity measures -- 12. k-Centers clustering -- 13. Hierarchical clustering -- 14. Clustering model evaluation -- Part V. Getting better models -- 15. Model ensembles -- 16. Kernel methods -- 17. Attribute transformation -- 18. Discretization -- 19. Attribute selection.
Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
There are no comments on this title.