An introduction to quantitative finance / Stephen Blyth

By: Blyth, Stephen [author]Material type: TextTextPublication details: Oxford: Oxford University Press, 2014Description: xvi, 175 pages : illustrations ; 24 cmISBN: 9780199666591Subject(s): BUSINESS MATHEMATICS | FINANCE STATISTICAL METHODS | FINANCE AND ACCOUNTINGLOC classification: HG 106 .B49 2014
Contents:
pt. I PRELIMINARIES -- 1. Preliminaries -- 1.1. Interest rates and compounding -- 1.2. Zero coupon bonds and discounting -- 1.3. Annuities -- 1.4. Daycount conventions -- 1.5. An abridged guide to stocks, bonds and FX -- 1.6. Exercises -- pt. II FORWARDS, SWAPS AND OPTIONS -- 2. Forward contracts and forward prices -- 2.1. Derivative contracts -- 2.2. Forward contracts -- 2.3. Forward on asset paying no income -- 2.4. Forward on asset paying known income -- 2.5. Review of assumptions -- 2.6. Value of forward contract -- 2.7. Forward on stock paying dividends and on currency -- 2.8. Physical versus cash settlement -- 2.9. Summary -- 2.10. Exercises -- 3. Forward rates and libor -- 3.1. Forward zero coupon bond prices -- 3.2. Forward interest rates -- 3.3. Libor -- 3.4. Forward rate agreements and forward libor -- 3.5. Valuing floating and fixed cashflows -- 3.6. Exercises -- 4. Interest rate swaps -- 4.1. Swap definition --0 4.2. Forward swap rate and swap value. Contents note continued -- 4.3. Spot-starting swaps -- 4.4. Swaps as difference between bonds -- 4.5. Exercises -- 5. Futures contracts -- 5.1. Futures definition -- 5.2. Futures versus forward prices -- 5.3. Futures on libor rates -- 5.4. Exercises -- 6. No-arbitrage principle -- 6.1. Assumption of no-arbitrage -- 6.2. Monotonicity theorem -- 6.3. Arbitrage violations -- 6.4. Exercises -- 7. Options -- 7.1. Option definitions -- 7.2. Put-call parity -- 7.3. Bounds on call prices -- 7.4. Call and put spreads -- 7.5. Butterflies and convexity of option prices -- 7.6. Digital options -- 7.7. Options on forward contracts -- 7.8. Exercises -- pt. III REPLICATION, RISK-NEUTRALITY AND THE FUNDAMENTAL THEOREM -- 8. Replication and risk-neutrality on the binomial tree -- 8.1. Hedging and replication in the two-state world -- 8.2. Risk-neutral probabilities -- 8.3. Multiple time steps -- 8.4. General no-arbitrage condition -- 8.5. Exercises -- 9. Martingales, numeraires and the fundamental theorem. Contents note continued -- 9.1. Definition of martingales -- 9.2. Numeraires and fundamental theorem -- 9.3. Change of numeraire on binomial tree -- 9.4. Fundamental theorem: a pragmatic example -- 9.5. Fundamental theorem: summary -- 9.6. Exercises -- 10. Continuous-time limit and Black -- Scholes formula -- 10.1. Lognormal limit -- 10.2. Risk-neutral limit -- 10.3. Black -- Scholes formula -- 10.4. Properties of Black -- Scholes formula -- 10.5. Delta and vega -- 10.6. Incorporating random interest rates -- 10.7. Exercises -- 11. Option price and probability duality -- 11.1. Digitals and cumulative distribution function -- 11.2. Butterflies and risk-neutral density -- 11.3. Calls as spanning set -- 11.4. Implied volatility -- 11.5. Exercises -- pt. IV INTEREST RATE OPTIONS -- 12. Caps, floors and swaptions -- 12.1. Caplets -- 12.2. Caplet valuation and forward numeraire -- 12.3. Swaptions and swap numeraire -- 12.4. Summary -- 12.5. Exercises -- 13. Cancellable swaps and Bermudan swaptions. Contents note continued -- 13.1. European cancellable swaps -- 13.2. Callable bonds -- 13.3. Bermudan swaptions -- 13.4. Bermudan swaption exercise criteria -- 13.5. Bermudan cancellable swaps and callable bonds -- 13.6. Exercises -- 14. Libor-in-arrears and constant maturity swap contracts -- 14.1. Libor-in-arrears -- 14.2. Libor-in-arrears convexity correction -- 14.3. Classic libor-in-arrears trade -- 14.4. Constant maturity swap contracts -- 14.5. Exercises -- 15. The Brace -- Gatarek -- Musiela framework -- 15.1. BGM volatility surface -- 15.2. Option price dependence on BGM volatility surface -- 15.3. Exercises -- pt. V TOWARDS CONTINUOUS TIME -- 16. Rough guide to continuous time -- 16.1. Brownian motion as random walk limit -- 16.2. Stochastic differential equations and geometric Brownian motion -- 16.3. Ito's lemma -- 16.4. Black-Scholes equation -- 16.5. Ito and change of numeraire
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Home library Collection Shelving location Call number Copy number Status Date due Barcode
Books Books LRC - Annex
National University - Manila
General Education General Circulation GC HG106 .B49 2014 (Browse shelf (Opens below)) c.1 Available NULIB000013076

Includes references and index.

pt. I PRELIMINARIES --
1. Preliminaries --
1.1. Interest rates and compounding --
1.2. Zero coupon bonds and discounting --
1.3. Annuities --
1.4. Daycount conventions --
1.5. An abridged guide to stocks, bonds and FX --
1.6. Exercises --
pt. II FORWARDS, SWAPS AND OPTIONS --
2. Forward contracts and forward prices --
2.1. Derivative contracts --
2.2. Forward contracts --
2.3. Forward on asset paying no income --
2.4. Forward on asset paying known income --
2.5. Review of assumptions --
2.6. Value of forward contract --
2.7. Forward on stock paying dividends and on currency --
2.8. Physical versus cash settlement --
2.9. Summary --
2.10. Exercises --
3. Forward rates and libor --
3.1. Forward zero coupon bond prices --
3.2. Forward interest rates --
3.3. Libor --
3.4. Forward rate agreements and forward libor --
3.5. Valuing floating and fixed cashflows --
3.6. Exercises --
4. Interest rate swaps --
4.1. Swap definition --0
4.2. Forward swap rate and swap value. Contents note continued --
4.3. Spot-starting swaps --
4.4. Swaps as difference between bonds --
4.5. Exercises --
5. Futures contracts --
5.1. Futures definition --
5.2. Futures versus forward prices --
5.3. Futures on libor rates --
5.4. Exercises --
6. No-arbitrage principle --
6.1. Assumption of no-arbitrage --
6.2. Monotonicity theorem --
6.3. Arbitrage violations --
6.4. Exercises --
7. Options --
7.1. Option definitions --
7.2. Put-call parity --
7.3. Bounds on call prices --
7.4. Call and put spreads --
7.5. Butterflies and convexity of option prices --
7.6. Digital options --
7.7. Options on forward contracts --
7.8. Exercises --
pt. III REPLICATION, RISK-NEUTRALITY AND THE FUNDAMENTAL THEOREM --
8. Replication and risk-neutrality on the binomial tree --
8.1. Hedging and replication in the two-state world --
8.2. Risk-neutral probabilities --
8.3. Multiple time steps --
8.4. General no-arbitrage condition --
8.5. Exercises --
9. Martingales, numeraires and the fundamental theorem. Contents note continued --
9.1. Definition of martingales --
9.2. Numeraires and fundamental theorem --
9.3. Change of numeraire on binomial tree --
9.4. Fundamental theorem: a pragmatic example --
9.5. Fundamental theorem: summary --
9.6. Exercises --
10. Continuous-time limit and Black --
Scholes formula --
10.1. Lognormal limit --
10.2. Risk-neutral limit --
10.3. Black --
Scholes formula --
10.4. Properties of Black --
Scholes formula --
10.5. Delta and vega --
10.6. Incorporating random interest rates --
10.7. Exercises --
11. Option price and probability duality --
11.1. Digitals and cumulative distribution function --
11.2. Butterflies and risk-neutral density --
11.3. Calls as spanning set --
11.4. Implied volatility --
11.5. Exercises --
pt. IV INTEREST RATE OPTIONS --
12. Caps, floors and swaptions --
12.1. Caplets --
12.2. Caplet valuation and forward numeraire --
12.3. Swaptions and swap numeraire --
12.4. Summary --
12.5. Exercises --
13. Cancellable swaps and Bermudan swaptions. Contents note continued --
13.1. European cancellable swaps --
13.2. Callable bonds --
13.3. Bermudan swaptions --
13.4. Bermudan swaption exercise criteria --
13.5. Bermudan cancellable swaps and callable bonds --
13.6. Exercises --
14. Libor-in-arrears and constant maturity swap contracts --
14.1. Libor-in-arrears --
14.2. Libor-in-arrears convexity correction --
14.3. Classic libor-in-arrears trade --
14.4. Constant maturity swap contracts --
14.5. Exercises --
15. The Brace --
Gatarek --
Musiela framework --
15.1. BGM volatility surface --
15.2. Option price dependence on BGM volatility surface --
15.3. Exercises --
pt. V TOWARDS CONTINUOUS TIME --
16. Rough guide to continuous time --
16.1. Brownian motion as random walk limit --
16.2. Stochastic differential equations and geometric Brownian motion --
16.3. Ito's lemma --
16.4. Black-Scholes equation --
16.5. Ito and change of numeraire

There are no comments on this title.

to post a comment.

© 2021 NU LRC. All rights reserved.Privacy Policy I Powered by: KOHA