Practical data science with Python : learn tools and techniques from hands-on examples to extract insights from data / Nathan George

By: George, Nathan [author]Material type: TextTextPublication details: Birmingham, Packt Publishing, c2021Description: xxiii, 595 pages ; 24 cmISBN: 9781801071970Subject(s): BIG DATA | DATABASE MANAGEMENT | PYTHON (COMPUTER PROGRAM LANGUAGE)LOC classification: QA 76.73.P98 .G46 2021
Contents:
An Introduction and the Basics -- Chapter 1: Introduction to Data Science -- The data science origin story -- The top data science tools and skills -- Python -- Other programming languages -- GUIs and platforms -- Cloud tools -- Statistical methods and math -- Collecting, organizing, and preparing data -- Software development -- Business understanding and communication -- Specializations in and around data science -- Machine learning -- Business intelligence -- Deep learning -- Data engineering -- Big data Statistical methods -- Natural Language Processing (NLP) -- Artificial Intelligence (AI) -- Choosing how to specialize -- Data science project methodologies -- Using data science in other fields -- CRISP-DM -- TDSP -- Further reading on data science project management strategies -- Other tools -- Test your knowledge -- Summary -- Chapter 2: Getting Started with Python -- Installing Python with Anaconda and getting started -- Installing Anaconda -- Running Python code -- The Python shell -- The IPython Shell -- Jupyter -- Why the command line? -- Command line basics Installing and using a code text editor -- VS Code -- Editing Python code with VS Code -- Running a Python file -- Installing Python packages and creating virtual environments -- Python basics -- Numbers -- Strings -- Variables -- Lists, tuples, sets, and dictionaries -- Lists -- Tuples -- Sets -- Dictionaries -- Loops and comprehensions -- Booleans and conditionals -- Packages and modules -- Functions -- Classes -- Multithreading and multiprocessing -- Software engineering best practices -- Debugging errors and utilizing documentation -- Debugging -- Documentation -- Version control with Git Code style -- Productivity tips -- Test your knowledge -- Summary -- Dealing with Data -- Chapter 3: SQL and Built-in File Handling Modules in Python -- Introduction -- Loading, reading, and writing files with base Python -- Opening a file and reading its contents -- Using the built-in JSON module -- Saving credentials or data in a Python file -- Saving Python objects with pickle -- Using SQLite and SQL -- Creating a SQLite database and storing data -- Using the SQLAlchemy package in Python -- Test your knowledge -- Summary -- Chapter 4: Loading and Wrangling Data with Pandas and NumPy Data wrangling and analyzing iTunes data -- Loading and saving data with Pandas -- Understanding the DataFrame structure and combining/concatenating multiple DataFrames -- Exploratory Data Analysis (EDA) and basic data cleaning with Pandas -- Examining the top and bottom of the data -- Examining the data's dimensions, datatypes, and missing values -- Investigating statistical properties of the data -- Plotting with DataFrames -- Cleaning data -- Filtering DataFrames -- Removing irrelevant data -- Dealing with missing values -- Dealing with outliers -- Dealing with duplicate values.
Summary: The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data.
Item type: Books
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Home library Collection Shelving location Call number Copy number Status Date due Barcode
Books Books LRC - Main
National University - Manila
Machine Learning General Circulation GC QA 76.73.P98 .G46 2021 (Browse shelf (Opens below)) c.1 Available NULIB000019744

Includes index.

An Introduction and the Basics --
Chapter 1: Introduction to Data Science --
The data science origin story --
The top data science tools and skills --
Python --
Other programming languages --
GUIs and platforms --
Cloud tools --
Statistical methods and math --
Collecting, organizing, and preparing data --
Software development --
Business understanding and communication --
Specializations in and around data science --
Machine learning --
Business intelligence --
Deep learning --
Data engineering --
Big data Statistical methods --
Natural Language Processing (NLP) --
Artificial Intelligence (AI) --
Choosing how to specialize --
Data science project methodologies --
Using data science in other fields --
CRISP-DM --
TDSP --
Further reading on data science project management strategies --
Other tools --
Test your knowledge --
Summary --
Chapter 2: Getting Started with Python --
Installing Python with Anaconda and getting started --
Installing Anaconda --
Running Python code --
The Python shell --
The IPython Shell --
Jupyter --
Why the command line? --
Command line basics Installing and using a code text editor --
VS Code --
Editing Python code with VS Code --
Running a Python file --
Installing Python packages and creating virtual environments --
Python basics --
Numbers --
Strings --
Variables --
Lists, tuples, sets, and dictionaries --
Lists --
Tuples --
Sets --
Dictionaries --
Loops and comprehensions --
Booleans and conditionals --
Packages and modules --
Functions --
Classes --
Multithreading and multiprocessing --
Software engineering best practices --
Debugging errors and utilizing documentation --
Debugging --
Documentation --
Version control with Git Code style --
Productivity tips --
Test your knowledge --
Summary --
Dealing with Data --
Chapter 3: SQL and Built-in File Handling Modules in Python --
Introduction --
Loading, reading, and writing files with base Python --
Opening a file and reading its contents --
Using the built-in JSON module --
Saving credentials or data in a Python file --
Saving Python objects with pickle --
Using SQLite and SQL --
Creating a SQLite database and storing data --
Using the SQLAlchemy package in Python --
Test your knowledge --
Summary --
Chapter 4: Loading and Wrangling Data with Pandas and NumPy Data wrangling and analyzing iTunes data --
Loading and saving data with Pandas --
Understanding the DataFrame structure and combining/concatenating multiple DataFrames --
Exploratory Data Analysis (EDA) and basic data cleaning with Pandas --
Examining the top and bottom of the data --
Examining the data's dimensions, datatypes, and missing values --
Investigating statistical properties of the data --
Plotting with DataFrames --
Cleaning data --
Filtering DataFrames --
Removing irrelevant data --
Dealing with missing values --
Dealing with outliers --
Dealing with duplicate values.

The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data.

There are no comments on this title.

to post a comment.

© 2021 NU LRC. All rights reserved.Privacy Policy I Powered by: KOHA