000 01614nam a2200217Ia 4500
003 NULRC
005 20250520100534.0
008 250520s9999 xx 000 0 und d
020 _a047161971X
040 _cNULRC
050 _aQA 279 .P85 1993
100 _aPukelsheim, Friedrich
_eauthor
245 0 _aOptimal design of experiments /
_cFriedrich Pukelsheim
260 _aNew York :
_bJohn Wiley & Son, Inc.,
_cc1993
300 _axxiii, 454 pages;
_c24 cm.
504 _aIncludes bibliographical references and index.
505 _aChapter1. Experimental design -- Chapter2.Optimal designs for scalar parameter system -- Chapter3. Information matrices -- Chapter4. Loewner optimality -- Chapter5. Real Optimality criteria -- Chapter6. Matrix means -- Chapter7. The general equivalence theorem -- Chapter8. Optimal moment matrices and optimal designs -- Chapter9. D-,A-,E-,T-optimality -- Chapter10. Admissibility of moment and information matrices -- Chapter11. Bayes designs and discrimination designs -- Chapter12. Efficient designs for finite sample -- Chapter13. Invariant design problem -- Chapter14. Kiefer optimality -- Chapter15. Rotatability and response surface designs .
520 _aThe design problems originate from statistics, but are solved using special tools from linear algebra and convex analysis, such as the information matrix mapping of chapter 3 and the information function of chapter 5. It is hoped that the exposition conveys some of the fascinate that grows out of merging three otherwise distinct mathematical disciplines.
650 _aEXPERIMENTAL DESIGN
942 _2lcc
_cBK
999 _c7247
_d7247